">教育信息网

您现在的位置:主页 > 高起点辅导 > 数学辅导 >  > 正文

2015年度成考高起点数学难点分析二

发布时间:2015-07-21 11:32来源:浏览次数:

 难点6 函数值域及求法

函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.

  ●难点磁场

(★★★★★)设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).

(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M.

(2)当m∈M时,求函数f(x)的最小值.

(3)求证:对每个m∈M,函数f(x)的最小值都不小于1.

难点7 奇偶性与单调性(一)

函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.

 ●难点磁场

(★★★★)设a>0,f(x)= 是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数.

  难点8 奇偶性与单调性(二)

函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.

  ●难点磁场

(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.?

●案例探究

[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3×2+3x-4(x∈B)的最大值.

 难点9 指数函数、对数函数问题

指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.

  ●难点磁场

(★★★★★)设f(x)=log2 ,F(x)= +f(x).

(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ;

(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解.

  难点10 函数图象与图象变换

函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.

  ●难点磁场

(★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围.